Tumor response of temozolomide in combination with morphine in a xenograft model of human glioblastoma
نویسندگان
چکیده
Despite multimodal treatments comprising, radiation therapy (RT) and chemotherapy with temozolomide (TMZ), the prognosis of glioblastoma multiforme (GBM) remains dismal and consolidated therapy yields a median survival of 14.6 months. Blood Brain Barrier (BBB) mediated chemoresistance and high dose related toxicity make necessary the development of new therapeutic approach to sensitize GBM to TMZ. The aim of the present study was to investigate the potential of the treatment morphine plus TMZ metronmic doses (1,77 and 0,9 mg/kg) in GBM therapy. The effect of morphine, on tumor cell growth and P-glycoprothein (P-gp) activity, was investigate in in vitro models. The results demonstrated that GBM cells growth is not influenced by morphine treatment and, for the first time, we show that morphine is an inhibitor of the activity of P-gp efflux transporter who is markedly expressed on BBB. In vivo, response to the treatments TMZ plus morphine was investigated in an orthotopic nude mice model of GBM. Animals treated with TMZ metronomic doses showed a significant tumor growth inhibition compared to untreated mice and association with morphine appears to improve TMZ efficacy. Moreover, the combination of morphine with lower dose of TMZ result in a cytostatic effect on tumor growth over the period of the pharmacological treatments. In conclusion this novel approach could be a successful strategy to overcome chemoresistance and side effects TMZ mediated, reducing drug dosage and improving long term response, in GBM therapy.
منابع مشابه
In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme
Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...
متن کاملThe Regression of Glioblastoma Multiforme is Time Dependent in Wild-Type Rat Xenograft Model
Introduction: Glioblastoma multiforme (GBM) is an aggressive case of primary brain cancer which remains among the most fatal tumors worldwide. Although, some in vitro and in vivo models have been developed for a better understanding of GBM behavior; a natural model of GBM would improve the efficiency of experimental models to human GBM tumors. We aimed at the present study to examine the surviv...
متن کاملTranscriptional targeting of adenovirally delivered tumor necrosis factor alpha by temozolomide in experimental glioblastoma.
Temozolomide is an oral alkylating agent shown to have modest efficacy in the treatment of glioblastoma multiforme. Tumor necrosis factor alpha (TNF-alpha) is a polypeptide cytokine with synergistic antitumor activity in combination therapy with alkylating agents. We investigated the combined use of Ad.Egr-TNF, a replication-defective adenoviral vector encoding the cDNA for TNF-alpha under the ...
متن کاملThymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line
Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...
متن کاملTranscriptional Targeting of Adenovirally Delivered Tumor
Temozolomide is an oral alkylating agent shown to have modest efficacy in the treatment of glioblastoma multiforme. Tumor necrosis factor (TNF) is a polypeptide cytokine with synergistic antitumor activity in combination therapy with alkylating agents. We investigated the combined use of Ad.Egr-TNF, a replication-defective adenoviral vector encoding the cDNA for TNFunder the control of chemo-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017